COUNTEREXAMPLES TO CONVEXITY OF k-INTERSECTION BODIES
نویسنده
چکیده
It is a well-known result due to Busemann that the intersection body of an origin-symmetric convex body is also convex. Koldobsky introduced the notion of k-intersection bodies. We show that the k-intersection body of an origin-symmetric convex body is not necessarily convex if k > 1.
منابع مشابه
On the local convexity of intersection bodies of revolution
One of the fundamental results regarding intersection bodies is Busemann’s theorem, which states that the intersection body of a symmetric convex body is convex. Thus, it is natural to ask how much of convexity is guaranteed under the intersection body operation. In this paper we provide several results about the (strict) improvement of convexity for intersection bodies of symmetric bodies of r...
متن کاملVolume difference inequalities for the projection and intersection bodies
In this paper, we introduce a new concept of volumes difference function of the projection and intersection bodies. Following this, we establish the Minkowski and Brunn-Minkowski inequalities for volumes difference function of the projection and intersection bodies.
متن کاملCOUNTEREXAMPLES IN CHAOTIC GENERALIZED SHIFTS
In the following text for arbitrary $X$ with at least two elements, nonempty countable set $Gamma$ we make a comparative study on the collection of generalized shift dynamical systems like $(X^Gamma,sigma_varphi)$ where $varphi:GammatoGamma$ is an arbitrary self-map. We pay attention to sub-systems and combinations of generalized shifts with counterexamples regarding Devaney, exact Dev...
متن کاملAn Analytic Solution to the Busemann-Petty Problem on Sections of Convex Bodies
We derive a formula connecting the derivatives of parallel section functions of an origin-symmetric star body in Rn with the Fourier transform of powers of the radial function of the body. A parallel section function (or (n − 1)dimensional X-ray) gives the ((n − 1)-dimensional) volumes of all hyperplane sections of the body orthogonal to a given direction. This formula provides a new characteri...
متن کاملTranslative and Kinematic Integral Formulae concerning the Convex Hull Operation Translative and Kinematic Integral Formulae
For convex bodies K; K 0 and a translation in n-dimensional Euclidean space, let K _ K 0 be the convex hull of the union of K and K 0. Let F be a geometric functional on the space of all convex bodies. We consider special families (r) r>0 of measures on the translation group T n such that the limit lim r!1 Z Tn F (K _ K 0) dd r () exists and can be expressed in terms of K and K 0. The functiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013